Performance Measurement and

Visualization on the Cray XT

Luiz DeRose
Programming Environments Director
Cray Inc.

k.

Luiz DeRose © Cray Inc. March 2011

Cray Toolset Design Goals T e

= Assist the user with application performance analysis and
optimization
e Help user identify important and meaningful information from
potentially massive data sets
e Help user identify problem areas instead of just reporting data
e Bring optimization knowledge to a wider set of users

= Focus on ease of use and intuitive user interfaces

e Automatic program instrumentation
e Automatic analysis

= Target scalability issues in all areas of tool development
e Data management
> Storage, movement, presentation

March 2011 Luiz DeRose © Cray Inc. 2

The Cray Performance Analysis Framework T

= Supports traditional post-mortem performance analysis

e Automatic identification of performance problems

> Indication of causes of problems

> Suggestions of maodifications for performance improvement
e Transitioning to an optimization guidance tool

= CrayPat

e pat_build: automatic instrumentation (no source code changes
needed)

e run-time library for measurements (transparent to the user)
e pat_report for performance analysis reports
e pat_help: online help utility

= Cray Apprentice?
e Graphical performance analysis and visualization tool

March 2011 Luiz DeRose © Cray Inc. 3

The Cray Performance Analysis Framework (2)

= CrayPat
e |[nstrumentation of optimized code
e No source code modification required
e Data collection transparent to the user
e Text-based performance reports
e Derived metrics
e Performance analysis

= Cray Apprentice2
e Performance data visualization tool
e Call tree view
e Source code mappings

March 2011 Luiz DeRose © Cray Inc.

C=RA0Y

THE SUPERCOMPUTER COMPANY

Collecting Performance Data e

= \When performance measurement is triggered
e External agent (asynchronous)
» Sampling
o Timer interrupt
o Hardware counters overflow

e Internal agent (synchronous)

> Code instrumentation
o Event based
o Automatic or manual instrumentation

= How performance data is recorded

e Profile ::= Summation of events over time
> run time summarization (functions, call sites, loops, ...)

e Trace file ::= Sequence of events over time

March 2011 Luiz DeRose © Cray Inc. S

Multiple Dimensions of Scalability T

= Millions of lines of code
e Automatic profiling analysis
> ldentifies top time consuming routines

> Automatically creates instrumentation template customized to your
application

= | ots of processes/threads

e [oad imbalance analysis

> ldentifies computational code regions and synchronization calls that could
benefit most from load balance optimization

> Estimates savings if corresponding section of code were balanced

= | ong running applications
e Detection of outliers (coming soon)

March 2011 Luiz DeRose © Cray Inc. 6

Performance Analysis with Cray Tools T

= |[mportant performance statistics:

e Top time consuming routines
e [oad balance across computing resources
e Communication overhead

e Cache utilization

FLOPS
e \ectorization (SSE instructions)

e Ratio of computation versus communication

March 2011 Luiz DeRose © Cray Inc. 7

Application Instrumentation with pat_build e I

= No source code or makefile modification required

e Automatic instrumentation at group (function) level
> Groups: mpi, io, heap, math SW, ...

= Performs link-time instrumentation
e Requires object files
e Instruments optimized code
e Generates stand-alone instrumented program
e Preserves original binary
e Supports sample-based and event-based instrumentation

March 2011 Luiz DeRose © Cray Inc. 8

CrayPat API - For Fine Grain Instrumentation

" Fortran
include “pat_apif.h”

call PAT region_begin(id, “label’, ierr)
doi=1,n

enddo

call PAT _region_end(id, ierr)

= C&CH+H+

Include <pat_api.h>

lerr = PAT_region_begin(id, “label”);
< code segment >
lerr = PAT _region_end(id);

March 2011 Luiz DeRose © Cray Inc.

CCRRASY

THE SUPERCOMPUTER COMP,

CrayPat API - Disable/Enable Recording T

" Fortran
include “pat_apif.h”

call PAT record(0) ! Disable
doi=1,n

enddo

call PAT record(1) ! Enable

= C&CH+H+

Include <pat_api.h>

lerr = PAT _record(0); /* Disable */
< code segment >
lerr = PAT _record(1); /* Enable */

March 2011 Luiz DeRose © Cray Inc. 10

Where to Run Instrumented Applications T

= MUST run on Lustre (/work/... , /lus/..., /scratch/..., etc.)

= Number of files used to store raw data

e 1 file created for program with 1 — 256 processes
e n files created for program with 257 — n processes

e Ability to customize with PAT RT_EXPFILE_MAX

March 2011 Luiz DeRose © Cray Inc. 11

pat_report e

B Performs data conversion

e Combines information from binary with raw performance
data

= Performs analysis on data

= Generates text report of performance results

" Formats data for input into Cray Apprentice?

March 2011 Luiz DeRose © Cray Inc. =

Automatic Profiling Analysis e I

= Analyze the performance data and direct the user to
meaningful information

= Simplifies the procedure to instrument and collect
performance data for novice users

= Based on a two phase mechanism

1. Automatically detects the most time consuming functions in the

application and feeds this information back to the tool for further (and
focused) data collection

2. Provides performance information on the most significant parts of the
application

March 2011 Luiz DeRose © Cray Inc. 13

Steps to Collecting Performance Data e T

= Access performance tools software

[©)

% module load perftools
= Build application keeping .o files (CCE: -h keepfiles)

make clean
make

0
©°
0

©°

= |nstrument application for automatic profiling analysis
e You should get an instrumented program a.out+pat

©)

5 pat build -0 apa a.out

= Run application to get top time consuming routines

e You should get a performance file (“<sdatafile>.xf") or
multiple files in a directory <sdatadir>

[e)

% aprun .. a.out+pat (or gsub <pat script>)

March 2011 Luiz DeRose © Cray Inc. 1Ly

Steps to Collecting Performance Data (2) T g

= (Generate report and .apa instrumentation file

% pa rt -0 my sampling report [<sdatafile>.xf |
p<sd‘a Pd S Y © g rep

" |nspect .apa file and sampling report

= Verify if additional instrumentation is needed

e Check the sampling report for possible regions to instrument with
the CrayPat API

March 2011 Luiz DeRose © Cray Inc. Slide 15

Sampling Output (Table 1) e

Notes for table 1:

Samp % provides

Table 1: Profile by Function absolute percentages

Samp % ‘ Samp ‘ Imb. Imb

2 nction

Samp Sam
PE="HIDE'

100.0% | 775 |

94 .2%

OOWR-JINNOO RN
PP AP AP NN NN
REEFEENWOICTW
00 00O W-~JC0WNUIO)
NNJO1OUTIOWOOONNJ
0000 UTWLW~JOOROUIooUT
W <JINWOOANWWORN
BOONUIYONUTUTO 0N
PP
Q
:
H
()
o |
Hh

(€7 T

mpi sendrecv
mpi~bcast -
mpi~barrisr

[l ol o
S [0 0]Ve]
oPoPoe
[l ol o
Wk
'—l
oo
(0)18,]0)
AWN
WOIN
(@]8,[V3)
<NOWw
oPoPoe

March 2011 Luiz DeRose © Cray Inc. 16

Sampling Output (Table 2) e T

Table 2: Profile by Group, Function, and Line

Samp % Samp Imb. Imb. |Group .
Samp Samp % Function
Source
Line
PE='HIDE'
100.0% | 777 | -— | -- |Total
94.2% | 732 | -— | -- |USER
43 .4% | 337 | == == Imlwx z
1dr¥mhd3d/src/mlwxyz.f
L 2.1% 16 1.47 8.9% |line.39
4 2.8% 22 2.25 9.7% |line.78
4 1.2% 9 1.09 11.3% |line.116
4 1.4% 11 1.22 10.5% |line.129
4 2.2% 17 2.12 11.5% |line.139
4 2.7% 21 0.84 4.0% |line.568
4 1.3% 10 1.72 14.8% |line. 604
4 2.4% 19 0.72 3.7% |line.634
16.1% 125 == -- |half
l | | l I 1ldr7/mhd3d/src/half. £
l 5.4% | 42 6.41 | 13.8% |line.28
4 10.7% 83 5.91 6.9% |line.40
8.0% 62 == -- | full
l | | l I 1dr7/mhd3d/src/full. £
L 8.0% | 62 | 6.31 | 9.6% |line.22
I =
I=SSTER T 4z -1 qmer
1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
'I'§§'T“’IZ'TIE'EE“"EETB%“EBI’EEEEE"
1.7% 13 5.66 30.7% |mpi~barrier

March 2011 Luiz DeRose © Cray Inc. 17

APA File Example

You can edit this file, if desired, and use it

to reinstrument the program for tracing like this:

#

pat_build -O mhd3d.Oapa.x+4125-401sdt.apa

#

These suggested trace options are based on data from:

#

/home/crayadm/ldr/mhd3d/run/mhd3d.Oapa.x+4125-401sdt.ap2,

/home/crayadm/ldr/imhd3d/run/mhd3d.Oapa.x+4125-401sdt.xf

HWPC group to collect by defaulit.

-Drtenv=PAT_RT_HWPC=1 # Summary with instructions metrics.

#
Libraries to trace.
-g mpi
#
User-defined functions to trace, sorted by % of samples.
Limited to top 200. A function is commented out if it has < 1%
of samples, or if a cumulative threshold of 90% has been reached,
or if it has size < 200 bytes.

Note: -u should NOT be specified as an additional option.

CRANY

THE SUPERCOMPUTER COMPANY

43.37% 99659 bytes

-T mlwxyz_

16.09% 17615 bytes
-T half_

6.82% 6846 bytes

-T artv_

1.29% 5352 bytes

-T currenh_

1.03% 25294 bytes
-T bndbo_

Functions below this point account for less than 10% of samples.

3*

1.03% 31240 bytes
-T bndto_

-0 mhd3d.x+apa # New instrumented program.

Iwork/crayadm/ldrimhd3d/mhd3d.x # Original program.

March 2011 Luiz DeRose © Cray Inc. 18

CRANY

-g tracegroup (subset) gt T S
= adios Adaptable I/O System API

= armci Aggregate Remote Memory Copy

= blas Basic Linear Algebra subprograms

= caf Co-Array Fortran (Cray CCE compiler only)

= chapel Chapel language compile and runtime library API

= dmapp Distributed Memory Application API for Gemini network

= hdf5 manages extremely large and complex data collections

= heap dynamic heap

" |0 Includes stdio and sysio groups

= |apack Linear Algebra Package

= mpi MPI

= omp OpenMP API and runtime library APl (CCE and PGl only)
= shmem SHMEM

= upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build

March 2011

Luiz DeRose © Cray Inc. 19

Steps to Collecting Performance Data (2) T g

= |nstrument application for further analysis (a.out+apa)
$ pat build -0 <apafile>.apa

= Run application

o

% aprun .. a.out+apa (or gsub <apa script>)
= (Generate text report and visualization file (.ap2)

% pat report -o my text report.txt [<datafile>.xf |
p<dé?taglr>] Y _£=P

= View report in text and/or with Cray Apprentice?

% app2 <datafile>.ap?2

March 2011 Luiz DeRose © Cray Inc. Slide 20

pat_report: Flat Profile o T

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Group
| | | Time % | | Function
I I I I | PE='HIDE'
100.0% | 104.593634 | -= | -- | 22649 |Total
l __
| 71.0% | 74.230520 | -= | -- | 10473 |MPI
| |[s====smmsssscescesssssasssasasssssssssosssseEse s ssEoomnoo0s
|| 69.7% | 72.905208 | 0.508369 | 0.7% | 125 |mpi_allreduce
|] 1.0% | 1.050931 | 0.030042 | 2.8% | 94 |mpi alltoall
|
| 25.3% | 26.514029 | -= | -= | 73 |USER
| |[se=s=sssmmsssscsssmmesmosesssnmssssssssssses soeese oo oe s o
|l 16.7% | 17.461110 | 0.329532 | 1.9% | 23 |selfgravity
|] 7.7% | 8.078474 | 0.114913 | 1.4% | 48 |ffted
|
| 2.5% | 2.659429 | -= | -= | 435 |MPI_SYNC
| |[se=s=ssmsssmscessassssossssssmssossessoesssoosssssms= oo
|| 2.1% | 2.207467 | 0.768347 | 26.2% | 172 |mpi barrier (sync)
|
| 1.1% | 1.188998 | --= -- | 11608 |HEAP
| |[s===mmmmsmmssmssssssssssssasssmsses s sesesse s se Do moomos
|| 1.1% | 1.166707 | 0.142473 | 11.1% | 5235 |free
I

March 2011 Luiz DeRose © Cray Inc. 21

pat_report: Message Stats by Caller T I

Table 4: MPI Message Stats by Caller

MPI Msg |MPI Msg | MsgSz | 4KB<= |Function
Bytes | Count | <16B | MsgSz | Caller
| | Count | <64KB | PE[mmm]
| | | Count |

15138076.0 | 4099.4 | 411.6 | 3687.8 |Total

15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND

I

I

I

|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_

31 I I | MAIN_

| 1|]=-========——————————— - —m oo
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.O

4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9

4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.1l5
111

|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calcl_

31 I I | | MAIN

| 1|]=-=========—————————— - oo m oo
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.O

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5

1111

March 2011 Luiz DeRose © Cray Inc. 22

Using Hardware Performance

Counters

Luiz DeRose
Programming Environments Director
Cray Inc.

h

Luiz DeRose © Cray Inc. March 2011

Hardware Performance Counters b o

= AMD Opteron Hardware Performance Counters

e Four 48-bit performance counters.

» Each counter can monitor a single event
o Count specific processor events

» the processor increments the counter when it detects an occurrence of the
event

» (e.g., cache misses)
o Duration of events

» the processor counts the number of processor clocks it takes to complete an
event

» (e.g., the number of clocks it takes to return data from memory after a cache
MIss)

e Time Stamp Counters (TSC)
> Cycles (user time)

March 2011 Luiz DeRose © Cray Inc. 24

PAPI Predefined Events Ay

= Common set of events deemed relevant and useful for
application performance tuning

e Accesses to the memory hierarchy, cycle and instruction counts,
functional units, pipeline status, etc.

e The “papi_avail” utility shows which predefined events are available on
the system — execute on compute node

= PAPI also provides access to native events

e The “papi_native _avall” utility lists all AMD native events available on
the system — execute on compute node

= Information on PAPI and AMD native events
e pat_help counters
e man papi_counters

e For more information on AMD counters:
> http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/26049.PDF

March 2011 Luiz DeRose © Cray Inc. 25

Hardware Counters Selection AN

= PAT RT_HWPC <set number> | <event list>

e Specifies hardware counter events to be monitored
> A set number can be used to select a group of predefined hardware
counters events (recommended)
o CrayPat provides 19 groups on the Cray XT systems

> Alternatively a list of hardware performance counter event names can be

used

o Both formats can be specified at the same time, with later definitions overriding
previous definitions

o A statistical (multiplexing) approach is used when more than 4 events are
provided

» Hardware counter events are not collected by default

March 2011 Luiz DeRose © Cray Inc. 26

CRANY”

Hardware Counters Overhead Elimination

Hardware performance counter events:

PAPI L1 DCM
CYCLES RTC

PAPI LI DCA
PAPI TLB DM
PAPI_FP OPS

Level 1 data cache misses

User Cycles (approx, from rtc)

Level 1 data cache accesses

Data translation lookaside buffer misses
Floating point operations

Estimated minimum overhead per call of a traced function,
which was subtracted from the data shown in this report

(for raw data, use the option: -s overhead=include):
PAPI L1 DCM 8.040 misses
PAPI TLB DM 0.005 misses

PAPI L1 DCA
PAPI_FP _OPS
CYCLES_RTC

Time

March 2011

474 .080 refs
0.000 ops
1863.680 cycles
0.693 microseconds

Luiz DeRose © Cray Inc. 27

PAT RT _HWPC=1 (Summary with TLB)

PAPI_TLB DM
PAPI_L1 DCA
PAPI_FP_OPS
DC_MISS

User_ Cycles

Data translation lookaside buffer misses
Level 1 data cache accesses
Floating point operations

Data Cache Miss
Virtual Cycles

CRRANY

THE SUPERCOMPUTER COMPANY

Time
Imb.Time
Imb.Time%
Calls
PAPI_L1 DCM
PAPI_TLB DM
PAPI_L1 DCA
PAPI_FP_OPS

User time (approx)
Average Time per Call

CrayPat Overhead :

Time

HW FP Ops / User time
HW FP Ops / WCT
Computational intensity
MFLOPS (aggregate)

TLB utilization

D1 cache hit,miss ratios

D1 cache utilization (misses)

98.3%
4.434402
0.001M/sec 4500.0
14.820M/sec 65712197
0.902M/sec 3998928
333.331M/sec 1477996162
445 .571M/sec 1975672594
4.434 secs 11971868993
0.000985

0.1%
445 .571M/sec 1975672594

445 .533M/sec

0
1782.
369.
95.
22.

.17 ops/cycle 1.34
28M/sec

60 refs/miss 0.722
6% hits 4.4%
49 refs/miss 2.811

secs

PAT_RT_HWPC=1
Flat profile data
Hard counts

Derived metrics

[

secs

calls
misses
misses
refs
ops
cycles
sec

100.0%Tim

ops 4.1%peak (DP)
ops/ref

avg uses
misses

avg hits

_/

March 2011

Luiz DeRose © Cray Inc.

28

PAT_RT_HWPC=2 (L1 and L2 Metrics)

secs
secs

calls

fills

fills
misses
refs
cycles
sec

misses
avg hits
avg uses
misses
misses
avg hits
lines

100.0%Time

USER
Time$% 98.3%
Time 4.436808
Imb.Time =
Imb.Time$% ==
Calls 0.001M/sec 4500.0
DATA CACHE REFILLS:

L2 MODIFIED L2 __OWNED:

L2 EXCLUSIVE L2 _SHARED 9.821M/sec 43567825
DATA CACHE REFILLS FROM SYSTEM:

ALL 24.743M/sec 109771658
PAPI L1 DCM 14.824M/sec 65765949
PAPI L1 _DCA 332.960M/sec 1477145402
User time (approx) 4.436 secs 11978286133
Average Time per Call 0.000986
CrayPat Overhead : Time 0.1%

D1 cache hit,miss ratios 95.5% hits 4.5%
D1 cache utilization (misses) 22.46 refs/miss 2.808
D1 cache utilization (refills) 9.63 refs/refill 1.204
D2 cache hit,miss ratio 28.4% hits 71.6%
D1+D2 cache hit,miss ratio 96.8% hits 3.2%
D1+D2 cache utilization 31.38 refs/miss 3.922
System to D1 refill 24 .743M/sec 109771658
System to D1 bandwidth 1510.217MB/sec 7025386144
D2 to D1 bandwidth 599.398MB/sec 2788340816

March 2011 Luiz DeRose © Cray Inc.

CRANY”

THE SUPERCOMPUTER COMPANY

29

PAT_RT_HWPC=5 (Floating point mix) e

USER
Time% 98.4%
Time 4.426552 secs
Imb.Time -—- secs
Imb.Time% --
Calls 0.001M/sec 4500.0 calls

RETIRED MMX AND FP INSTRUCTIONS:
PACKED SSE AND SSE2 454.860M/sec 2013339518 instr

PAPI FML INS 156.443M/sec 692459506 ops

PAPIT FAD INS 289.908M/sec 1283213088 ops

PAPI FDV INS 7.418M/sec 32834786 ops

User time (approx) 4.426 secs 11950955381 cycles 100.0%Time
Average Time per Call 0.000984 sec

CrayPat Overhead : Time 0.1%

HW FP Ops / Cycles 0.17 ops/cycle

HW FP Ops / User time 446.351M/sec 1975672594 ops 4 .1%peak (DP)
HW FP Ops / WCT 446.323M/sec

FP Multiply / FP Ops 35.0%

FP Add / FP Ops 65.0%

MFLOPS (aggregate) 1785.40M/sec

March 2011 Luiz DeRose © Cray Inc. 30

PAT RT_HWPC=12 (QC Vectorization) e

USER
Time$ 98.3%
Time 4.434163 secs
Imb.Time -- secs
Imb.Time% --
Calls 0.001M/sec 4500.0 calls

RETIRED SSE_OPERATIONS:

SINGLE ADD_ SUB OPS:

SINGLE MUL OPS 0 ops
RETIRED SSE_OPERATIONS:

DOUBLE ADD SUB _OPS:

DOUBLE MUL OPS 225.224M/sec 998097162 ops
RETIRED SSE_OPERATIONS:

SINGLE ADD_ SUB OPS:

SINGLE MUL_OPS:OP_TYPE 0 ops
RETIRED SSE_OPERATIONS:

DOUBLE ADD SUB OPS:

DOUBLE MUL OPS:OP TYPE 445.818M/sec 1975672594 ops

User time (approx) 4.432 secs 11965243964 cycles 99.9%Time
Average Time per Call 0.000985 sec
CrayPat Overhead : Time 0.1%

March 2011 Luiz DeRose © Cray Inc. 31

Vectorization Example e I

Time$% 28.2%
Time 0.600875 secs
Imb.Time 0.069872 secs
Imb.Time% 11.9%
Calls 864.9 /sec 500.0 calls

RETIRED SSE OPERATIONS:

SINGLE ADD SUB OPS:

SINGLE MUL_OPS 0 ops
RETIRED SSE OPERATIONS:

DOUBLE_ADD SUB OPS:

DOUBLE_MUL OPS 369.139M/sec 213408500 ops
RETIRED SSE OPERATIONS:

SINGLE ADD SUB OPS:

SINGLE MUL _OPS:OP TYPE 0 ops
RETIRED SSE OPERATIONS:

DOUBLE_ADD SUB OPS:

DOUBLE MUIL_OPS:OP TYPE 369.139M/sec 213408500 ops
User time (approx) 0.578 secs 1271875000 cycles 96.2%Time

When compiled with fast:

USER / calc2_

Time% 24.3%
Time 0.485654 secs
Imb.Time 0.146551 secs
Imb.Time$% 26.4%
Calls 0.001M/sec 500.0 calls

RETIRED SSE OPERATIONS:

SINGLE ADD SUB OPS:

SINGLE MUL OPS 0 ops
RETIRED SSE OPERATIONS:

DOUBLE ADD SUB OPS:

DOUBLE MUL OPS 208.641M/sec 103016531 ops
RETIRED SSE OPERATIONS:

SINGLE ADD SUB OPS:

SINGLE MUL OPS:0P TYPE 0 ops
RETIRED SSE OPERATIONS:

DOUBLE ADD SUB OPS:

DOUBLE MUL OPS:OP TYPE 415.628M/sec 205216531 ops
User time (approx) 0.494 secs 1135625000 cycles 100.0%Time

March 2011 Luiz DeRose © Cray Inc. 32

How do | interpret these derived metrics? T e B

= The following thresholds are guidelines to identify if
optimization is needed:

e Computational Intensity: < 0.5 ops/ref
> This is the ratio of FLOPS by L&S
> Measures how well the floating point unit is being used

e FP Multiply / FP Ops or FP Add / FP Ops: < 25%

e \ectorization: < 1.5

March 2011 Luiz DeRose © Cray Inc. 33

Memory Hierarchy Thresholds T e

TLB utilization: < 90.0%
e Measures how well the memory hierarchy is being utilized with regards to TLB
e This metric depends on the computation being single precision or double precision

> A page has 4 Kbytes. So, one page fits 512 double precision words or 1024 single
precision words

e TLB utilization < 1 indicates that not all entries on the page are being utilized
between two TLB misses

Cache utilization: <1 (D1 or D1+D2)
e A cache line has 64 bytes (8 double precision words or 16 single precision words)
e Cache utilization < 1 indicates that not all entries on the cache line are being utilized
between two cache misses
D1 cache hit (or miss) ratios: < 90% (> 10%)

D1 + D2 cache hit (or miss) ratios: < 92% (> 8%)
e D1 and D2 caches on the Opteron are complementary
e This metric provides a view of the Total Cache hit (miss) ratio

March 2011 Luiz DeRose © Cray Inc. 34

Profile Visualization with Cray

Apprentice?

Luiz DeRose
Programming Environments Director
Cray Inc.

h

Luiz DeRose © Cray Inc. March 2011

Cray Apprentice? Y et

= Call graph profile = Cray Apprentice?
= Communication statistics = |starget to help
= Time-line view and correct:
e Communication * Load imbalance
e 1/O * Excessive communication

e Network contention
e EXcessive serialization
 |/O Problems

= Activity view

= Pair-wise communication
statistics

= Text reports
= Source code mapping

March 2011 Luiz DeRose © Cray Inc. 36

Statistics Overview AN

File Help Switch Overview display

wswim+apa+1378-12tdtap2 X |

Sort by Calls Sort by Time

1

mpi_irecv:32.6%

MPI_ISEND:32.6%

User Region: Do 300:15.2% calc3_:7 9%

im+apa+1378-12tdtap2 (716 events in 0.031s) 7 _

March 2011 Luiz DeRose © Cray Inc. 37

Call Tree View

File

C=RA0Y

THE SUPERCOMPUTER COMPANY

@y a0 uE 5 Width & inclusive time
wOverview X W CallGraph X| - -
- Height <& exclusive time i
Pl .
S,
; “/1:] Filtered
(c=0/39515=0.2033) L nodes or
. sub tree
Load balance overview: 0254 S10.4705) (c=0/3808 520 031)
Height <& Max time P
Middle bar <> Average time DUH Button:
Lower bar <& Min time i U (.m'
Yell ¢ @ Provides hints
cllow represents ; 1 e ugita (7 for performance
imbalance time SRl tuning
mpl ey
Function
) Zoom
List
K I»Il:z
:I Search:l 2] Q—] Q
0{)0 0.56 112 1.68 2.251
|
March 2011

Luiz DeRose © Cray Inc.

Call Tree View — Function List

File

Y EHOEMEER

wOverview X ¥ Call Graph XI

Info—

Imb TimelName |
0.3702 mpi_waitall_[7]
0.3103 mpi_waitall_[4]
0.1586 mpi_waitall_[10]
0.1226 mpi_waitall_[6]
0.1108 mpi_waitall_[1]
0.1017 mpi_waitall_[3]
0.0917 calcl_

0.0673 calc3_

0.0649 calc2_

0.0249 mpi_waitall_[9]
0.0161 mpi_isend_[13]
0.0129 mpi_irecv_[10]
0.0117 mpi_isend_[10]
0.0090 mpi_waitall_[0]
0.0084 mpi_isend_[7]
0.0072 mpi_irecv_[13]
0.0070 mpi_isend_[4]
0.0065 mpi_irecv_[4]
0.0048 mpi_irecv_[7]
0.0031 mpi_waitall_[2]
0.0029 mpi_reduce_(sync)
0.0025 mpi_waitall_[5]
0.0001 mpi_reduce_
0.0000 mpi_waitall_[8]
0.0000 mpi_irecv_[18]
0.0000 mpi_isend_[16]
0.0000 mpi_finalize_
0.0000 mpi_comm_rank_
0.0000 mpi_init_
0.0000 mpi_comm_size

K1 [»]

(] e oo | [List off

Right mouse click:
View menu:
e.g., Filter

Sort options

% Time,

Time,
Imbalance %
Imbalance time

Function

calc3_
(c=0.0221 e=0.4705)

calc2
(c=0.3803 e=0.5031)

C=RA0Y

THE SUPERCOMPUTER COMPANY

Right mouse click:
Node menu

e.g., hide/unhide
children

Help

[»]
Sea:cn:r il QL] @
A | | | A
0.00 0.56 112 1.68 224
| 7% |
March 2011 Luiz DeRose © Cray Inc. 39

Apprentice? Call Tree View of Sampled Data

THE SUPERCOMPUTER COMPANY

File Help
 sweep3d.mpi+samp.rts.ap2 XI
- Overview M "Callgr‘aph XI
[~]
glob
glob
mpi
R
[«] [+
>:=| Search:l L =
[sweep3d.mpi+samp.rts.ap2 (4,551 events in 0.126s) < I

March. _22;1
4 A

Luiz DeRose © Cray Inc. Slide 40

Source Mapping from Call Tree o T

= - B]X]

e Helo |

 sweep3d+mpidEp+tr xmlgz |

ey <O H M

 Orverview | Traffic Report | - Activity | W Call Graph "W sweep.f |

165 [a]

166 ¢ angle pipelining Toop Chatches of mni angles)

167 o

168 DO mo =1, mmo

169 mio = Cmo—=13"%mmi

170

121 ¢ E=inflows (k=k0 houndary)

172 o

173 if (k2.1t.0 .or. kbc.eq.0d then

174 do mi = 1, mmi

175 do j =1, jt J

178 do i =1, it

177 phikb{i,3,mi3 = 0.0d40

178 end do

179 end do

180 end do

181 glse

182 if {do_dsa) then

183 leak = 0.0

184 k = k0 — k2

185 do wi =1, i

186 m=m +mio

187 do 7 =1, jt

188 doi =1, it

189 phikh(i,.mid = phikbhc{d,3,m)

180 lTeak = leak

191 & + witsi (my*phikb (3,3 ,midedi (12*dj {3

192 face(i,j.k+k3,3) = face(i,j,k+k3,3D

193 & + whtsi {m)*phikh{i,9,mid

194 end do

185 end do

196 end do

197 . leakage(5) = leakage(5) + leak -
[« | O
A | | | A
0.0o 213 427 540 853

March 2011 Luiz DeRose © Cray Inc. 41

Detecting Load Imbalance on the
Cray XT

Luiz DeRose
Programming Environments Director
Cray Inc.

h

Luiz DeRose © Cray Inc. March 2011

Motivation for Load Imbalance Analysis e

® |[ncreasing system software and architecture complexity

e Current trend in high end computing is to have systems with tens of
thousands of processors
> This is being accentuated with multi-core processors

= Applications have to be very well balanced in order to
perform at scale on these MPP systems

e Efficient application scaling includes a balanced use of requested
computing resources

= Desire to minimize computing resource “waste”
e |dentify slower paths through code
e |dentify inefficient “stalls” within an application

March 2011 Luiz DeRose © Cray Inc. 43

Cray Tools Load Imbalance Support e B

= Very few performance tools focus on load imbalance
e Need standard metrics
e Need intuitive way of presentation

= CrayPat support:
e MPI sync time
e |Imbalance time and %
e MPI rank placement suggestions
e OpenMP Performance Metrics

= Cray Apprentice? support:
e |Load imbalance visualization

March 2011 Luiz DeRose © Cray Inc. e

MPI Sync Time e

= Measure load imbalance in programs instrumented to trace
MPI functions to determine if MPI ranks arrive at collectives
together

= Separates potential load imbalance from data transfer
= Sync times reported by default if MPI functions traced

= |f desired, PAT_RT_MPI_SYNC=0 deactivates this feature

March 2011 Luiz DeRose © Cray Inc. 45

Profile with Load Distribution by Groups

Table 1:
Time % |

100.0% |

| 23.0%
| 1.4%

March 2011

Profile by Function Group and Function

Time |
I
I

513.581345 |

127.809860
121.692894
40.231832
31.135595
30.404372
5.435825

117.877116
7.203319

Imb.

Time |

.800347
.797216
.622935
.354488
.887689
.256039

.988571
.428131

Imb. | Calls |Group
Time % | | Function
| | PE='HIDE'

-- | 368418.8 |Total

-- | 37064.0 |USER

21.5% | 1.0 |main

20.3% | 480.0 |momtum

26.8% | 480.0 |cnuity

34.6% | 34174.0 |mod _xc_xctilr
33.0% | 482.0 |hybgen

29.4% | 1446.0 |dpudpv

-- | 325626.8 |MPI

72.6% | 79473.6 |mpi_waitall
43.1% | 79470.8 |mpi_startall
-= | 5728.0 |MPI_SYNC
55.3% | 2814.0 |mpi_allreduce_(sync)

Luiz DeRose © Cray Inc.

CRRANY

THE SUPERCOMPUTER COMPANY

46

Imbalance Time AN

= Metric based on execution time

= |t Is dependent on the type of activity:
e User functions
Imbalance time = Maximum time — Average time
e Synchronization (Collective communication and barriers)
Imbalance time = Average time — Minimum time
= |dentifies computational code regions and synchronization
calls that could benefit most from load balance optimization

= Estimates how much overall program time could be saved if
corresponding section of code had a perfect balance

e Represents upper bound on “potential savings”

e Assumes other processes are waiting, not doing useful work while
slowest member finishes

March 2011 Luiz DeRose © Cray Inc. 47

Load balance metric - rationale AN

Between two barriers
User: Imb = Max-Avg = 99-40 = 59
MPI Sync: Avg = 59
MPI Sync+Comm: Avg-Min = 60-1 = 59

[Avg Comm
[]Avg Sync
] Avg User
B MPI comm
[l MPI sync

O user

| | | | | | [| | | | | | | | | | |
T T T T T T T T T T T T T T T T T T 1
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100

March 2011 Luiz DeRose © Cray Inc. 48

Imbalance % AN

Imbalance time 9 N

Max Time N-1

= Represents % of resources available for parallelism that is
“‘wasted”

Imbalance% =100 X

= Corresponds to % of time that rest of team is not engaged in
useful work on the given function

= Perfectly balanced code segment has imbalance of 0%

= Serial code segment has imbalance of 100%

March 2011 Luiz DeRose © Cray Inc. 49

Call Tree Visualization (Hycom)

CRANY

THE SUPERCOMPUTER COMPANY

Eile Help
w 090921P+hycomBase.ap2 X |
@eXE
wOverview ¥ ¥ Callgraph X| -
L E) o
e TR T g |
(19'5‘3!7{% m"(% '6 'k)lll’“r‘;.‘;','gg,; " momtum m i‘ w-lt-ll! 8] - |
o mpi, WI!I“ 6] lu-gg.‘lGZN) &ES.CDBB%I) mod. xc xctilr S]
- _ (e=5%a865% \) s 1'75:39:)[
mod R ! MRl | | A
e SR we
p d,
‘i m’z‘{% mod xs‘ 'fs";q[‘]
mpi_waitall
F Vi i1 A
[« [»]
:I Search:l ﬂl Ql __]Q
1090921P+hyc0mBase.ap2 (605,339 events in 23.985s)

March 2011

Luiz DeRose © Cray Inc.

50

Call Tree Visualization (Hycom))

THE SUPERCOMPUTER COMPANY

File

w 090921P+hycomBase.ap2 X |

N ot S

wOverview X ¥ Callgraph X|

Help

[»]

|)
(RBPS 4%
mod [xexetill [2 mod i |3 mod itr |15 (e=31'38%)
v (':-p?Em)[] ‘S'ﬁik)l 1 e xz"f‘&jc)[1
"e‘.’.':"ﬂi’ {0 mod x xctilr_[1]m A ;l:ltlg 4] |
C U e . ,,,_Q ‘ D mr';'é-asa"‘ i ‘f‘ ****** \
B e _ mod2f s
\ unctien "mpi_waitall_' has the highest
mod X G SERL (0] "‘&'; 258543 | load imbalance time (33.0084265 seconds) A
/1 g ~ and is therefore a candidate for further T

examination fer performance optimization.

‘ mri llt

| _ |

"‘i‘f&’zw)

M EEEY

-

[«

:I Search:l 2] Q ._IQ

1090921P+hycomBase.ap2 (605,339 events in 23.985s)

March 2011 Luiz DeRose © Cray Inc. o1

Load Balance Distribution

Eile

CRANY

THE SUPERCOMPUTER COMPANY

Help

w 090921P+hycomBase.ap2 X |

@exn

Min, Avg, and Max
Values

wOverview X IvCaIIgraph X wloadBalance xl

PE Calls
PE #184
PE #240
PE #232
PE #213
PE #248
PE #198
PE #006
PE #145
PE #225
PE #233
PE #192
PE #144
PE #212
PE #149
PE #241
PE #185
PE #193
PE #007
PE #215
PE #203
PE #228
PE #239
PE #168
PE #000
PE #005
PE #122
PE #199
PE #148
PE #177
PE #140
PE #176
PE #220
PE #243
PE #242
PE #100
PE #214
PE #167
PE #003
PE #159
PE #210
PE #211
PE #029

Load Balance: mpi_waitall_

B8e+04

00 41

12e+02 43e+02 |v|

090921P+hycomBase.ap2 (605,339 events in 23.985s)

March 2011

Luiz DeRose © Cray Inc. 52

MPI Rank Reorder

= MPI rank placement with environment variable

» Distributed placement
» SMP style placement
» Folded rank placement
» User provided rank file

March 2011 Luiz DeRose © Cray Inc.

EEEEEEEEEEEEEEEEEEEEEEE

53

MPI Rank Placement Suggestions T e T

= When to use?
e Point-to-point communication consumes significant fraction of the
program time and have a significant imbalance
> pat_report -O mpi_sm_rank_order ...
e \When there seems to be a load imbalance of another type

» Can get a suggested rank order file based on user time
o pat_report-O mpi_rank_order ...

e Can have a different metric for load balance
> pat_report -O mpi_rank_order -s mro_metric=DATA_CACHE_MISSES ...

= |Information in resulting report
e Avalilable if MPI functions traced (-g mpi)

e Custom placement files automatically generated

> Report provides quad core and dual core suggestions
o 2,4, and 8 cores per node

e See table notes in resulting report for instructions on how to use

= Set MPICH _RANK REORDER_METHOD environment variable
e Set to numerical value or MPICH_RANK_ORDER file from pat_report

March 2011 Luiz DeRose © Cray Inc. 54

Rank Reorder Example (hycom) o

pat report -O load balance
Table 2: Load Balance across PE's by FunctionGroup

Time % | Time | Calls |Group
| l | PE [mmm]

100.0% | 513.581345 | 368418.8 |Total
69.5% | 356.710479 | 37064.0 |USER
| 441.604004 | 37064.0 |pe.73

| 0.3%

| 0.3% | 395.835561 | 37064.0 |pe.62
| 0.0% | 23.942438 | 37064.0 |pe.184
I

24.7% | 127.038044 | 325626.8 |MPI

I

I

I

I

I

I

|

| | 0.3% | 437.244595 | 239807.0 |pe.232
| | 0.1% | 90.023179 | 317002.0 |pe.1l2
| | 0.0% | 49.907519 | 317002.0 |pe.73
|
I
I
I
I
I
I

5.8% | 29.832822 | 5728.0 |MPI_SYNC
I _______________________________________
| 0.0% | 62.473245 | 5728.0 |pe.184
| 0.0% | 27.165827 | 5728.0 |pe.25
| 0.0% | 10.940857 | 5728.0 |pe.56

March 2011 Luiz DeRose © Cray Inc. 55

Example: -O mpi_rank_order (hycom) e

Notes for table 1:
To maximize the load balance across nodes,
specify a Rank Order with small Max and Avg USER Time
per node for the target number of cores per node.

To sp ec1f& a Rank Order with a numerical value, set the environment
variable MPICH RANK REORDER METHOD to the given value.

To specify a Rank Order with a letter value 'x', set the environment

variable MPICH RANK REORDER METHOD to 3, and copy or link the file
MPICH RANK ORDER.x to MPICH _RANK ORDER.

Table 1: Suggested MPI Rank Order
USER Time per MPI rank

Max Avg Max
USER Time USER Timé Rank

1015754691532 820499583863 73

Four cores per node: USER Time per node

Rank Max Maxé Av Avgé Max Node

Order USER Time M USER Timeé S Ranks
d 3441386576933 85.0% 3281998335454 100.0% 113,227,115,197
0 3857929506520 95.3% 3281998335454 100.0% 49,112,174.236
2 3911647317171 96.7% 3281998335454 100.0% 57,67,182,1i91
1 2046815451585 100.0% 3281998335454 100.0% 72,73,74,75

Eight cores per node: USER Time per node

Rank Max Max Avg Avgé Max Node

Order USER Time SM USER Timeé S Ranks
d 6657050297152 82.8% 6563996670908 100.0% 130,195,65,214,136,178,190,0
0 7315118136737 91.0% 6563996670908 100.0% 18,50,81,112,143,174,205,236
2 7499444177191 93.3% 6563996670908 100.0% 30,32,93,94,155,156,217,218
1 8036827543002 100.0% 6563996670908 100.0% 72.73.74,75.76,77,78,79

March 2011 Luiz DeRose © Cray Inc. 56

Example: File MPICH_RANK_ORDER.d (hycom) SRas

The custom rank placement in this file is the one labeled '4d'’
in the report from:

pat report -O mpi rank order \
7home/users/1dr/1dr7COE_Workshop/hycom/090921P+hycomBase .ap2

It targets multi-core processors, based on Time in USER group
collected for:

Program: hycom.2009Sepl0.x
Number PEs: 249
Cores/Node: 4

To use this file, copy it to MPICH RANK ORDER and set the
environment variable MPICH RANK REORDER METHOD to 3 prior
to executing the program. — - -

46,126,32,176,109,224,48,243,39,142,154,220,137,21,174,140
36,151,155,242,15,219,133,177,110,108,134,100,25,118,132,148
130,195,65,214,136,178,190,0,61,141,54,167,162,161,189,122
111,183,35,3,163,129,50,199,93,84,88,29,246,26,153,168
38,196,182,210,156,30,51,5,81,231,64,159,24,179,49,239
104,95,175,143,206,120,152,215,80,217,135,4,13,31,34,228
37,169,66,211,157,83,172,203,92,226,53,234,201,86,188,7
180,238,52,139,138,229,33,193,45,194,94,166,207,205,173,185
63,204,18,11,14,164,97,241,131,123,99,22,102,101,98,149
40,107,223,85,103,202,76,212,82,247,67,70,124,208,79,144
105,235,89,160,119,87,78,192,181,10,55,127,20,221,77,225
191,9,44,209,23,106,96,233,60,187,17,146,170,244,57,145
112,150,43,117,236,216,56,6,47,8,19,121,116,12,58,198
16,27,42,186,158,230,218,248,41,1,245,165,62,200,59,213
114,2,91,28,128,125,75,232,222,147,90,71,171,69,72,240
113,227,115,197,237,68,74,184,73

Fedede 33 e

March 2011 Luiz DeRose © Cray Inc. S7

Custom grid_order

$./grid order

Usage: grid order -C|-R [- PI—Z] -g N1,N2,...
-c nl,n2, . [0 d1,d2,...]
[-m max] [n ranks per line] [-T] [il i2 ...]

This program can be used to generate a rank order list for an MPI
application that uses communication between nearest neighbors

in a grid. Note that this grid is a 'virtual' topology in the
application's logic, not the physical topology of the machine

on which it executes. But it is assumed that ranks in the

list will be packed onto machine nodes in the order given.

You must specify either -C or -R for column- or row-major numbering.
For example, if the application uses a 2 or 3 dimensional grid, then
use -C if it assigns MPI rank 1 to position (1,0) or (1,0,0), but
use -R if it assigns MPI rank 1 to position (0,1) or (0,0,1
To see the difference, compare the output from:

grid order -C -g 4,6

grid order -R -g 4,6
The terms seem backwards if (1,0) is interpreted as x,y coordinates,
but natural if interpreted as array indices in Fortran or C.
Their usage here follows the definition of row-major numbering
for a 'Cartesian virtual topology' in the MPI standard.

For an application based on an N by M grid that uses column-major
numbering and is run on six-core processors, either of the options:

will produce a list of ranks suitable for the MPICH RANK ORDER file,

such that blocks of 6 nearest neighbors are placed on each processor.

If the same application is run on nodes containing two six-core
processors, you could use -c 3,4 or -c 4,3. If possible, order the
-c numbers so that each evenly divides the corresponding -g number.

For an N by M by L grid with row-major numbering, and nodes with

two six-core processors, one of the following can be used:
-R -¢ 2,2,3 -g N,M,L

March 2011 Luiz DeRose © Cray Inc.

CRANY”

THE SUPERCOMPUTER COMPANY

58

Documentation for the Cray

Performance Toolset

Luiz DeRose
Programming Environments Director
Cray Inc.

.

Luiz DeRose © Cray Inc. March 2011

Accessing Software Versions e

= Software package information

e Use avall, list or help parameters to module command
e ‘module help perftools’ shows release notes

= craypat version (same for pat_build, pat_report, pat_help)

% pat_build -V
CrayPat/X: Version 5.1 Revision 6438 12/10/10 13:37:21

= Cray Apprentice? version
e Displayed in top menu bar when running GUI

March 2011 Luiz DeRose © Cray Inc. 60

Release Notes AN

ldr@crow:~> module help perftools/5.1.2

——————————— Module Specific Help for 'perftools/5.1.2' —--————————-—-

Perftools 5.1.2

Release Date: September 16, 2010

A license key must be installed on a FLEXnet server prior to using
perftools

Purpose:

CrayPat 5.1.1 release revision: 3618
CrayPat 5.1.2 release revision: 3746

Bugs closed since 5.1.1 release (August 19, 2010)

March 2011 Luiz DeRose © Cray Inc. 61

Online Information AN

= User guide
e http://docs.cray.com
e Click on “Latest Docs” and choose “Performance Tools 5.0”

= Man pages

= To see list of reports that can be generated

tlPet report -O —h

= Notes sections in text performance reports provide
Information and suggest further options

March 2011 Luiz DeRose © Cray Inc. 62

http://docs.cray.com/

Online Information (2) T e

= Cray Apprentice? panel help

= pat_help — interactive help on the Cray Performance toolset

= FAQ avallable through pat_help

March 2011 Luiz DeRose © Cray Inc. 63

Man Pages e

" intro_craypat(l)

e [ntroduces the craypat performance tool
= pat_build

e [nstrument a program for performance analysis
= pat_help

e [nteractive online help utility
= pat_report

e Generate performance report in both text and for use with GUI
= hwpc(3)

e describes predefined hardware performance counter groups
= papi_counters(b)

e Lists PAPI event counters

e Use papi_avail or papi_native avall utilities to get list of events when
running on a specific architecture

March 2011 Luiz DeRose © Cray Inc. 64

Cray Apprentice? Panel Help Y.

pprentice2 5.0 o]

File Help |

w 090921P+hycomBase.ap2 X |

e X E

2 |

w Overview

Show Bar Chart Display
Show List Chart Display

L

Calls Sort by Time

Panel Actions »

Panel Help

mpi startall :21.9% momtum :34.2%

mpi waitall :21.9%

mpi waitall :33.1%
mpi_|

mpi wtime_:5.8%

mpi send init :9.2%

' md xc xctilr :9.4%
mpi_recv_init :9.2%

mod xc xctilr:8.7%_,. :
cnuity :11.3% § -

[090921P+hycomBase.ap2 (605,339 events in 24.172s) A 090900]

March 2011 Luiz DeRose © Cray Inc. 65

, AN
Top of Default Report from APA Sampling

CrayPat/X: Version 5.0 Revision 2631 (xf 2571) 05/29/09 14:54:00

Number of PEs (MPI ranks): 48
umger of Threads per PE: 1
Number of Cores per Processor: 4

Execution start time: Fri May 29 15:31:49 2009
System type and speed: x86 64 2200 MHz
Current path to data file:

/1lus/nid00008/homer/sweep3d/sweep3d.mpitsamp.rts.ap2 (RTS)

Notes:

Sampling interval was 10000 microseconds (100.0/sec)
BSD timer type was ITIMER PROF

Trace option suggestions have been generated into a separate file
from the data in the next table. You can examine the file, edit

it if desired, and use it to reinstrument the program like this:

pat build -O sweep3d.mpi+samp.rts.apa

March 2011 Luiz DeRose © Cray Inc. Slide 66

pat_help e T

= |Interactive by default, or use trailing . to just print a topic:
= New FAQ craypat 5.0.0.

= Has counter and counter group information

% pat_help counters amd_fam10h groups

March 2011 Luiz DeRose © Cray Inc. 67

pat_help Example e I

The top level CrayPat/X help topics are listed below.
A good place to start is:

overview

If a topic has subtopics, they are displayed under the heading
"Additional topics", as below. To view a subtopic, you need
only enter as many initial letters as required to distinguish
it from other items in the list. To see a table of contents
including subtopics of those subtopics, etc., enter:

toc

To produce the full text corresponding to the table of contents,
specify "all", but preferably in a non-interactive invocation:

pat help all . > all pat help
pat_help report all = > 3all report help

Additional topics:

API execute
balance experiment
build first example
counters overview
demos report
environment run

pat help (.=quit ,=back “=up /=top ~=search)
=>

March 2011 Luiz DeRose © Cray Inc. 68

pat_help FAQ Y et

pachelp (.=quit ,=back “=up /=top ~=search)
=> FAQ
Additional topics that may follow "FAQ":

Application Runtime Miscellaneous
Availability and Module Environment Processing Data with pat report
Building Applications Visualizing Data with Apprentice2

Instrumenting with pat build
patIhelp FAQ (.=quit ,=back “=up /=top ~=search)
=>
Additional topics that may follow ""Instrumenting with pat build"":

1. Can not access the file ...

2. ERROR: Missing required ELF section 'link information' from the program 'FILE'.
3. ERROR: Missing required ELF section 'string table' from the program '...'.

4. FATAL: The link information was not found in the .note section of ...

5. How can I find out the text size of functions?

6. How can I list trace points from my instrumented binary?

7. How can I lower the size of data files with pat build?

8. How can I NOT instrument some of my object fileTs)?

9. How do I get MPI rank order suggestions?

10. How do I specify a directory containing object files?

11. My error messaage is "xyz can not be traced because ... not writable"

12. Problems with instrumented programs using both MPI and OpenMP?

13. User sampling with compiler hooks present is not allowed

14. WARNING: Entry point 'FUNCTION' can not be traced because it is a locally
defined function

15. WARNING: The function 'FUNCTION' can not be traced because a trace wrapper
was not successfully created

16. What is APA?

17. Why am I getting an error with userTraceFunctions.c?

18. Why does my binary take longer to run when using 'pat build -u'?

pat help FAQ "Instrumenting with Eat build"
(.=quit ,=back “=up /=top ~=search) =>

March 2011 Luiz DeRose © Cray Inc. 69

FAQ Example e T

pat_help FAQ "Instrumenting with pat build"
(.=quit ,=back “=up /=top ~=search) => 4
FATAL: The link information was not found in the .note section of

If an executable is compiled and linked without the xt-craypat module
loaded, then it will not contain link information needed by pat build,
which will issue an error message and exit.

To verify that an executable was built with the link information that
pat build requires, use

readelf -S S$executable

It should show a .note section with a size of several kilobytes, say
section 19, and the output from

readelf -x 19 S$executable
should contain the string 'Cray Inc' and library paths.
pat_help FAQ "Instrumenting with pat build"
(.=quit ,=back “=up /=top ~=search) =>

March 2011 Luiz DeRose © Cray Inc. 70

CRANY

Hands-on Tasks i St OOV TN oY

1. Generate an “.apa” file and a sampling report from your application

2. Read the “.apa’” file and add I/O instrumentation

3. Use the .apa file to generate a profile of the application

4. Look at the sampling report and identify areas where work is concentrated.
Using the CrayPat APl add instrumentation around the important loop(s)

S. Generate a second profile of the application with code regions

6. Obtain MFLOPS, TLB Utilization, Cache Hit/Miss ratios (L1 and L2), Cache
utilization (L1, and L2), FP Mix, and Vectorization information for the main
regions and functions of the application

/. Visualize the performance file (.ap2) with Cray Apprentice2 and identify the
most imbalanced function or region of the application

8. Generate a trace file of the application (if the application is large, limit the size
of the trace file)

9. Visualize the trace file with Cray Apprentice2

10. Optimize your application with the data that you collected

March 2011 Luiz DeRose © Cray Inc. 71

Performance Measurement and

Visualization on the Cray XT

Questions / Comments
Thank You!

.

March 2011

